三道初二分解因式数学题~~求解答过程~!
m/(m+n)+m/(m-n)-n^2/(m^2-n^2),其中m/n=5/3x^2+1/x^2,其中x+1/x=2A/(x-1)+B/(x-2)=3x-4/[(x-1)...
m/(m+n) +m/(m-n) -n^2/(m^2-n^2),其中m/n=5/3
x^2+1/x^2,其中x+1/x=2
A/(x-1) + B/(x-2)=3x-4/[(x-1)(x-2)],求实数A、B。 展开
x^2+1/x^2,其中x+1/x=2
A/(x-1) + B/(x-2)=3x-4/[(x-1)(x-2)],求实数A、B。 展开
展开全部
1、分子分母同除m和n2得:m/(m+n) +m/(m-n) -n^2/(m^2-n^2)=1/(1+n/m)+1/(1-n/m)-1/(m2/n2-1)
带入m/n=5/3得结果为:41/16
2、∵x+1/x=2两端同时平方∴x2+2+1/x2=4∴x2+1/x2=2
3、通分得:[A(x-2)+B(x-1)]/[(x-1)(x-2)]=3x-4/[(x-1)(x-2)]
∴A(x-2)+B(x-1)=3x-4
∴(A+B)x-(2A+B)=3x-4
∴A+B=3,且2A+B=4
解得;A=1,B=2
带入m/n=5/3得结果为:41/16
2、∵x+1/x=2两端同时平方∴x2+2+1/x2=4∴x2+1/x2=2
3、通分得:[A(x-2)+B(x-1)]/[(x-1)(x-2)]=3x-4/[(x-1)(x-2)]
∴A(x-2)+B(x-1)=3x-4
∴(A+B)x-(2A+B)=3x-4
∴A+B=3,且2A+B=4
解得;A=1,B=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
m/(m+n) +m/(m-n) -n^2/(m^2-n^2)
=m(m-n)/(m^2-n^2)+m(m+n)/(m^2-n^2) -n^2/(m^2-n^2)
=[m(m-n)+m(m+n)-n^2]/(m^2-n^2)
=(2m^2-n^2)/(m^2-n^2)
=m^2/(m^2-n^2) +1
=1/(1-n^2/m^2) +1
=41/16
x^2+1/x^2
=x^2+2+1/x^2-2
=(x+1/x)^2-2
=2
A/(x-1) + B/(x-2)=3x-4/[(x-1)(x-2)],
=A(x-2)/[(x-1)(x-2)]+B(X-1)/[(x-1)(x-2)]=3x-4/[(x-1)(x-2)],
=(A+B)x-2A-B/[(x-1)(x-2)]=3x-4/[(x-1)(x-2)],
A+B=3
-2A-B=-4
A=1
B=2
=m(m-n)/(m^2-n^2)+m(m+n)/(m^2-n^2) -n^2/(m^2-n^2)
=[m(m-n)+m(m+n)-n^2]/(m^2-n^2)
=(2m^2-n^2)/(m^2-n^2)
=m^2/(m^2-n^2) +1
=1/(1-n^2/m^2) +1
=41/16
x^2+1/x^2
=x^2+2+1/x^2-2
=(x+1/x)^2-2
=2
A/(x-1) + B/(x-2)=3x-4/[(x-1)(x-2)],
=A(x-2)/[(x-1)(x-2)]+B(X-1)/[(x-1)(x-2)]=3x-4/[(x-1)(x-2)],
=(A+B)x-2A-B/[(x-1)(x-2)]=3x-4/[(x-1)(x-2)],
A+B=3
-2A-B=-4
A=1
B=2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询