已知函数f(x)=2cosx(sinx-cosx)+1,x属于R。(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间〔π/8,3
已知函数f(x)=2cosx(sinx-cosx)+1,x属于R。(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间〔π/8,3π/4]上的最小值和最大值过程详...
已知函数f(x)=2cosx(sinx-cosx)+1,x属于R。(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间〔π/8,3π/4]上的最小值和最大值
过程详细点~~~最好解释下 展开
过程详细点~~~最好解释下 展开
3个回答
展开全部
解:
f(x)=2cosx(sinx-cosx)+1
=2sinxcosx-2(cosx)^2+1
=2sinxcosx-[2(cosx)^2-1]
=sin2x-cos2x
=√2(√2/2*sin2x-√2/2*cos2x)
=√2(sin2xcosπ/4-cos2xsinπ/4)
=√2sin(2x-π/4)
(1)
f(x)=√2sin(2x-π/4)
∴函数f(x)的最小正周期:
T=2π/2=π
(2)f(x)=2sinxcosx+1-2cosx^2
=sin2x-cos2x
=√2sin(2x-π/4)
π/8≤x≤3π/4
得 0≤2x-π/4≤5π/4
f(x)最小值是=√2sin5π/4=-1
f(x)最大值是=√2 2sinπ/2=√2
f(x)=2cosx(sinx-cosx)+1
=2sinxcosx-2(cosx)^2+1
=2sinxcosx-[2(cosx)^2-1]
=sin2x-cos2x
=√2(√2/2*sin2x-√2/2*cos2x)
=√2(sin2xcosπ/4-cos2xsinπ/4)
=√2sin(2x-π/4)
(1)
f(x)=√2sin(2x-π/4)
∴函数f(x)的最小正周期:
T=2π/2=π
(2)f(x)=2sinxcosx+1-2cosx^2
=sin2x-cos2x
=√2sin(2x-π/4)
π/8≤x≤3π/4
得 0≤2x-π/4≤5π/4
f(x)最小值是=√2sin5π/4=-1
f(x)最大值是=√2 2sinπ/2=√2
展开全部
f(x)=2cosx(sinx-cosx)+1
=2sinxcosx-2(cosx)^2+1
=2sinxcosx-[2(cosx)^2-1]
=sin2x-cos2x
=√2(√2/2*sin2x-√2/2*cos2x)
=√2(sin2xcosπ/4-cos2xsinπ/4)
=√2sin(2x-π/4)
(1)
f(x)=√2sin(2x-π/4)
T=2π/2=π
(2)f(x)=2sinxcosx+1-2cosx^2
=sin2x-cos2x
=√2sin(2x-π/4)
π/8≤x≤3π/4
得 0≤2x-π/4≤5π/4
f(x)最小值是=√2sin5π/4=-1
f(x)最大值是=√2 2sinπ/2=√2
=2sinxcosx-2(cosx)^2+1
=2sinxcosx-[2(cosx)^2-1]
=sin2x-cos2x
=√2(√2/2*sin2x-√2/2*cos2x)
=√2(sin2xcosπ/4-cos2xsinπ/4)
=√2sin(2x-π/4)
(1)
f(x)=√2sin(2x-π/4)
T=2π/2=π
(2)f(x)=2sinxcosx+1-2cosx^2
=sin2x-cos2x
=√2sin(2x-π/4)
π/8≤x≤3π/4
得 0≤2x-π/4≤5π/4
f(x)最小值是=√2sin5π/4=-1
f(x)最大值是=√2 2sinπ/2=√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-04-05
展开全部
我现在怀疑你是不是二十二中的,我也在写
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询