解方程log2(4^x+1)=x+log2(2^(x+3)-6)
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
log2(4^x+1)=log2(2^x)+log2(2^(x+3)-6)
log2(4^x+1)=log2((2^x)(2^(x+3)-6))
4^x+1=(2^x)(2^(x+3)-6)
2^(2x)+1=(2^x)(8(2^x)-6)
射2^x=y
y^2+1=y(8y-6)
y^2+1=8y^2-6y
7y^2-6y-1=0
y=1 或 -1/7
2^x=1 推出 x=lg1/lg2=0
2^x=-1/7 推出 x=lg(-1/7)/lg2 无解
log2(4^x+1)=log2((2^x)(2^(x+3)-6))
4^x+1=(2^x)(2^(x+3)-6)
2^(2x)+1=(2^x)(8(2^x)-6)
射2^x=y
y^2+1=y(8y-6)
y^2+1=8y^2-6y
7y^2-6y-1=0
y=1 或 -1/7
2^x=1 推出 x=lg1/lg2=0
2^x=-1/7 推出 x=lg(-1/7)/lg2 无解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询