高一数学三角函数题,求解!

设有实数范围内的A,B,记M(a,b)为函数f(x)=绝对值(sin2X+cos2x+ax+b)在[0,1.5π]上的最大值,求A,B变化时M能取到的最小值,及此时A,B... 设有实数范围内的A,B,记M(a,b)为函数f(x)=绝对值(sin2X+cos2x+ax+b)在[0,1.5π]上的最大值,求A,B变化时M能取到的最小值,及此时A,B的值。 展开
Dragon_fyl
2011-03-19 · TA获得超过721个赞
知道小有建树答主
回答量:193
采纳率:100%
帮助的人:301万
展开全部
这道题貌似见过哦,突破点就在,sin2x+cos2x在[0,1.5π]有三个极值点:π/8,5π/8,9π/8
分别对应极值1,-1,1(这个发现还不能令人激动吗)
于是猜想,M的最小值就是1,用反证法证明:
假设存在M小于1,则f(π/8),f(5π/8),f(9π/8)均小于1
有y=ax+b,在π/8处位于y轴下方,在5π/8处位于y轴上方,在9π/8处位于y轴下方
(当然,这可以用代数,即不等式,来表述,只是打字太麻烦)
矛盾
故M不小于1
有a=b=0时,恰有M=1
故M最小为1

又,M=1时,必须y=ax+b过点(π/8,0),(5π/8,0),(9π/8,0)中的两个,否则可类似上面突出矛盾,故a=b=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式