已知函数f(x)=|x-a|,g(x)=x²+2ax+1(a为正常数),且函数f(x)与g(x)的图案在y轴上的截距相等

求a的值求函数f(x)+g(x)的单调递增区间若n为正实数,证明10^f(a)[(4/5)^g(n)]<4... 求a的值
求函数f(x)+g(x)的单调递增区间
若n为正实数,证明10^f(a)[(4/5)^g(n)]<4
展开
936946590
2014-08-12 · TA获得超过2.9万个赞
知道大有可为答主
回答量:4446
采纳率:83%
帮助的人:2761万
展开全部

答案如图所示,友情提示:点击图片可查看大图

答题不易,且回且珍惜

如有不懂请追问,若明白请及时采纳,祝学业有成O(∩_∩)O~~~

fanglva
2014-08-12 · TA获得超过3.4万个赞
知道大有可为答主
回答量:2.2万
采纳率:87%
帮助的人:5622万
展开全部
f(x)=a-x (x<a)
f(x)=x-a (x>=a)
∵a>0∴f(0)=a
g(0)=f(0)=a
0^2+2a*0+1=a
a=1
f(x)=1-x (x<1)
f(x)=x-1 (x>=1)
g(x)=x^2+2x+1
x<1时
f(x)+g(x)=x^2+x+2
=(x+1/2)^2+7/4
单减区间:(-∞,-1/2)
单增区间:(-1/2,1)
x>=1时
f(x)+g(x)=x^2+3x
=(x+3/2)^2-9/4
单增区间:[1,+∞)
综述,单减区间:(-∞,-1/2)
单增区间:(-1/2,+∞)
10^f(a)[(4/5)^g(n)]
=10^(1-1)[(4/5)^(n^2+2n+1)
=(4/5)^[(n+1)^2]
∵n>0

∴n+1>1
(n+1)^2>1
(4/5)^[(n+1)^2]<1
∴(4/5)^[(n+1)^2]<4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式