设f(X)=x²+px+q,求证:绝对值的f(1),绝对值的f(2),绝对值的f(3),中至少有一个不小于1/2

匿名用户
推荐于2021-02-07
展开全部
【证明】(反证法)
假设|f(1)|、|f(2)|、|f(3)|都小于1/2,
注意到f(1)=1+a+b, f(2)=4+2a+b, f(3)=9+3a+b
所以f(1)+f(3)-2f(2)=2
根据绝对值不等式的性质可知
|f(1)+f(3)-2f(2)|≤|f(1)|+|f(3)|+2|f(2)|<1/2+1/2+2*1/2=2
又因为上式左边f(1)+f(3)-2f(2)=2
所以2<2,推出矛盾
所以假设不成立,故原命题得证!

参考资料: http://zhidao.baidu.com/question/75617098.html

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式