问。。。两道数学题哈,帮帮忙
1.用12.96米长的竹篱笆围成一个两米高的圆柱形粮囤,接口处长是0.4米,粮囤内的稻谷占容积的75%,又知每立方米稻谷约重1100千克,粮囤内装有稻谷多少吨?2.把一个...
1.用12.96米长的竹篱笆围成一个两米高的圆柱形粮囤,接口处长是0.4米,粮囤内的稻谷占容积的75%,又知每立方米稻谷约重1100千克,粮囤内装有稻谷多少吨?
2.把一个高为3分米的圆柱体的底面平均分成若干个扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体。长方体的表面积比圆柱体的表面积增加了120平方厘米,原来的圆柱的体积是多少? 展开
2.把一个高为3分米的圆柱体的底面平均分成若干个扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体。长方体的表面积比圆柱体的表面积增加了120平方厘米,原来的圆柱的体积是多少? 展开
3个回答
展开全部
1.
12.96-0.4 即是其底面圆周长,那么半径r=C/2π≈2米
V=πr²h≈25.12立方米,又稻谷占容积的75%,则稻谷的体积 V稻=75%V=18.84立方米
每立方米稻谷约重1100千克,即1.1吨
那么稻谷的总重为 18.84×1.1=20.724吨
2.
其拼法参照推导圆面积时的拼法,如图
http://image.baidu.com/i?ct=503316480&z=&tn=baiduimagedetail&word=%D4%B2%B5%C4%C3%E6%BB%FD&in=6083&cl=2&lm=-1&pn=22&rn=1&di=18166182210&ln=1428&fr=&fmq=&ic=&s=&se=&sme=0&tab=&width=&height=&face=&is=&istype=#pn22&-1
设其底面半径为r,因其体积相等,高又没变,那么底面积必相等,表面积增加的部分只能是其侧面积,侧面积等于底面周长乘以高,由题意
(2πr+2r)h-2πrh=120
2rh=120
r=120/2h,高为3分米,即30厘米
r=2厘米
V=πr²h≈376.8立方厘米
12.96-0.4 即是其底面圆周长,那么半径r=C/2π≈2米
V=πr²h≈25.12立方米,又稻谷占容积的75%,则稻谷的体积 V稻=75%V=18.84立方米
每立方米稻谷约重1100千克,即1.1吨
那么稻谷的总重为 18.84×1.1=20.724吨
2.
其拼法参照推导圆面积时的拼法,如图
http://image.baidu.com/i?ct=503316480&z=&tn=baiduimagedetail&word=%D4%B2%B5%C4%C3%E6%BB%FD&in=6083&cl=2&lm=-1&pn=22&rn=1&di=18166182210&ln=1428&fr=&fmq=&ic=&s=&se=&sme=0&tab=&width=&height=&face=&is=&istype=#pn22&-1
设其底面半径为r,因其体积相等,高又没变,那么底面积必相等,表面积增加的部分只能是其侧面积,侧面积等于底面周长乘以高,由题意
(2πr+2r)h-2πrh=120
2rh=120
r=120/2h,高为3分米,即30厘米
r=2厘米
V=πr²h≈376.8立方厘米
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询