求数列{1/(2n+1)(2n+3)}的前n项和

参考书上解释到这一步我没看懂谁能解释一下这是怎么换算的an={1/(2n+1)(2n+3)}=1/2{1/(2n+1)-1/(2n+3)}谢谢... 参考书上解释到这一步我没看懂 谁能解释一下这是怎么换算的
an={1/(2n+1)(2n+3)}=1/2{1/(2n+1)-1/(2n+3)}
谢谢
展开
fkdwn
2011-03-20 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2583
采纳率:0%
帮助的人:1424万
展开全部
an=1/[(2n+1)(2n+3)]
=[(2n+3)-(2n+1)]/[2(2n+1)(2n+3)]
=(2n+3)/[2(2n+1)(2n+3)]-(2n+1)/[2(2n+1)(2n+3)]
=1/[2(2n+1)]-1/[2(2n+3)]
=(1/2)[1/(2n+1)-1/(2n+3)]
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式