如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.(1)写出图

如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.(1)写出图中所有相等的线段,并选择其中一对给予证明... 如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.(1)写出图中所有相等的线段,并选择其中一对给予证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由. 展开
 我来答
执事RAY
2014-12-08 · 超过50用户采纳过TA的回答
知道答主
回答量:117
采纳率:75%
帮助的人:48.1万
展开全部
(1)ED=DA,EA=EB=EC.
证明:
∵CE⊥BD,
∴△CED是直角三角形.
∵∠BDC=60°,
∴∠ECD=30°.
∴CD=2DE.
∵CD=2DA,
∴DE=DA.

(2)有,△ADE ∽ △AEC.
由(1)的结论可知∠DAE=∠DEA=30°=∠ECA,
∴△ADE ∽ △AEC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式