如图,△ABC中,AB=AC,∠BAC=120°,点D、E在边BC上,且BD=AD,CE=AE.判断△ADE的形状,并说明理由

如图,△ABC中,AB=AC,∠BAC=120°,点D、E在边BC上,且BD=AD,CE=AE.判断△ADE的形状,并说明理由.... 如图,△ABC中,AB=AC,∠BAC=120°,点D、E在边BC上,且BD=AD,CE=AE.判断△ADE的形状,并说明理由. 展开
 我来答
萌包804丶036
推荐于2016-06-25 · TA获得超过180个赞
知道答主
回答量:129
采纳率:50%
帮助的人:136万
展开全部
△ADE的形状是等边三角形,
理由是:∵在△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵BD=AD,CE=AE,
∴∠BAD=∠B=30°,∠C=∠CAE=30°,
∴∠ADE=∠B+∠BAD=60°,∠AED=∠C+∠CAE=60°,
∴AD=AE,
∴△ADE是等边三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式