如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论: ①EG⊥FH,②四边形EFGH是矩形,③

如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC-AD),⑤四边形... 如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论: ①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是【 】A.1 B.2 C.3 D.4 展开
 我来答
殳代双x1
2014-11-25 · 超过59用户采纳过TA的回答
知道答主
回答量:121
采纳率:100%
帮助的人:111万
展开全部
C


专题:推理填空题.
分析:根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.
∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF= CD,FG= AB,GH= CD,HE= AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∴①EG⊥FH,正确;
②四边形EFGH是矩形,错误;
③HF平分∠EHG,正确;
④当AD∥BC,如图所示:E,G分别为BD,AC中点,
∴连接CD,延长EG到CD上一点N,
∴EN= BC,GN= AD,
∴EG= (BC-AD),只有AD∥BC是才可以成立, 而本题AD与BC很显然不平行,故本小题错误;
⑤四边形EFGH是菱形,正确.
综上所述,①③⑤共3个正确.
故选C.
点评:本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式