求圆心在直线3x-y=0上,与x轴相切,且被直线x-y=0截得的弦长为{2根号7的圆的方程请写详细的解题思路
展开全部
解:设圆为(x-a)^2+(y-b)^2=c^2 圆心在直线3x-y=0上所以b=3a 与x轴相切即与y=0只有一个根联立 得(x-a)^2+(3a)^2-c^2=0 转化得x^2-2ax+(10a^2-c^2)=0 △=4a^2-4(10a^2-c^2)=0 c^2=9a^2 圆方程(x-a) ^2+(y-3a)^2=9a^2 将上面的方程和直线y=x再次联立 化简可以得到2x^2-8ax+a^2=0 因为弦长等于2根号7 所以上面的方程一定有2个根设为x1 x2 可以得到(x1-x2)^2+(y1-y2)^2=(2根号7)^2 这里y1=x1 y2=x2 就不用解释了继续化简 (x1+x2)^2-4x1x2=0 由韦达定理带入可以求出a^2=1所以a=±1 所以圆的方程就是(x-1)^2+(y-3)^2=9 或者(x+1)^2+(y+3)^2=9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询