高等数学最值问题(应用题),请用导数来解答,谢谢!
3个回答
展开全部
以轮船乙的初始位置为坐标原点,以东为x轴正方向,以北为y轴的正方向建立直角坐标系。
轮船甲的初始位置为:(75,0)
t时刻轮船甲的位置:(75-12t,0)
t时刻轮船乙的位置:(0,6t)
t时刻两船的距离:s=√((75-12t)^2+(6t)^2)
=√(5625-1800t+180t^2)
s'=1/[2√(5625-1800t+180t^2)]*(-1800+360t)
=(-900+180t)/√(5625-1800t+180t^2)
s'=0
(-900+180t)/√(5625-1800t+180t^2)=0
-900+180t=0
t=5
s'>0
t>5时,s是增函数,t<5时,s是减函数。
因此t=5h时,s取得最小值:s=√(5625-1800*5+180*5^2)≈33.5 n mile
轮船甲的初始位置为:(75,0)
t时刻轮船甲的位置:(75-12t,0)
t时刻轮船乙的位置:(0,6t)
t时刻两船的距离:s=√((75-12t)^2+(6t)^2)
=√(5625-1800t+180t^2)
s'=1/[2√(5625-1800t+180t^2)]*(-1800+360t)
=(-900+180t)/√(5625-1800t+180t^2)
s'=0
(-900+180t)/√(5625-1800t+180t^2)=0
-900+180t=0
t=5
s'>0
t>5时,s是增函数,t<5时,s是减函数。
因此t=5h时,s取得最小值:s=√(5625-1800*5+180*5^2)≈33.5 n mile
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个是数学题目来的啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询