已知数列{a n }的前n项和为S n ,且满足a n +2S n ?S n-1 =0(n≥2),a 1 = 1 2 .(1)求证
已知数列{an}的前n项和为Sn,且满足an+2Sn?Sn-1=0(n≥2),a1=12.(1)求证:{1Sn}是等差数列;(2)求an表达式;(3)若bn=2(1-n)...
已知数列{a n }的前n项和为S n ,且满足a n +2S n ?S n-1 =0(n≥2),a 1 = 1 2 .(1)求证:{ 1 S n }是等差数列;(2)求a n 表达式;(3)若b n =2(1-n)a n (n≥2),求证:b 2 2 +b 3 2 +…+b n 2 <1.
展开
染倾肇扔1
推荐于2016-08-16
·
TA获得超过123个赞
知道答主
回答量:134
采纳率:100%
帮助的人:57.2万
关注
解(1)∵-a n =2S n S n-1 , ∴-S n +S n-1 =2S n S n-1 (n≥2) S n ≠0,∴ - =2,又 = =2, ∴{ }是以2为首项,公差为2的等差数列.
(2)由(1) =2+(n-1)2=2n, ∴S n = 当n≥2时,a n =S n -S n-1 =- n=1时,a 1 =S 1 = , ∴a n = ;
(3)由(2)知b n =2(1-n)a n = ∴b 2 2 +b 3 2 +…+b n 2 = + +…+ < + +…+ =(1- )+( - )+…+( - )=1- <1. |
收起
为你推荐: