如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一条直线上,连接BD、BE.把以
如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一条直线上,连接BD、BE.把以下所有正确结论的序号都填在写在横线上:_...
如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一条直线上,连接BD、BE.把以下所有正确结论的序号都填在写在横线上:______.①BD=CE; ②∠ACE+∠DBC=45°;③BD⊥CE; ④BE2=2(AB2+AD2).
展开
展开全部
①∵∠BAC=∠DAE,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE.故①正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE;故②正确;
③∵,∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,故③正确;
④∵BD⊥CE,
∴BE2=BD2+DE2.
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2,BC2=2AB2.
∵BC2=BD2+CD2≠BD2,
∴2AB2=BD2+CD2≠BD2,
∴BE2≠2(AD2+AB2).故④错误.
故答案为:①②③.
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
|
∴△ABD≌△ACE(SAS),
∴BD=CE.故①正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE;故②正确;
③∵,∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,故③正确;
④∵BD⊥CE,
∴BE2=BD2+DE2.
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2,BC2=2AB2.
∵BC2=BD2+CD2≠BD2,
∴2AB2=BD2+CD2≠BD2,
∴BE2≠2(AD2+AB2).故④错误.
故答案为:①②③.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |