(2012?恩施州)如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其
(2012?恩施州)如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(...
(2012?恩施州)如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
展开
1个回答
展开全部
解答:解:(1)由抛物线y=-x2+bx+c过点A(-1,0)及C(2,3)得,
,
解得
,
故抛物线为y=-x2+2x+3
又设直线为y=kx+n过点A(-1,0)及C(2,3)得
,
解得
故直线AC为y=x+1;
(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),
故直线DN′的函数关系式为y=-
x+
,
当M(3,m)在直线DN′上时,MN+MD的值最小,
则m=-
×3+
=
;
(3)由(1)、(2)得D(1,4),B(1,2),
∵点E在直线AC上,
设E(x,x+1),
①如图2,当点E在线段AC上时,点F在点E上方,
则F(x,x+3),
∵F在抛物线上,
∴x+3=-x2+2x+3,
解得,x=0或x=1(舍去)
∴E(0,1);
②当点E在线段AC(或CA)延长线上时,点F在点E下方,
则F(x,x-1)
由F在抛物线上
∴x-1=-x2+2x+3
解得x=
或x=
∴E(
,
)或(
,
)
综上,满足条件的点E的坐标为(0,1)、(
,
)或(
,
);
(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,-x2+2x+3)
∴PQ=(-x2+2x+3)-(x+1)
=-x2+x+2
又∵S△APC=S△APQ+S△CPQ
=
PQ?AG
=
(-x2+x+2)×3
=-
(x-
)2+
∴面积的最大值为
.
方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,
设Q(x,x+1),则P(x,-x2+2x+3)
又∵S△APC=S△APH+S直角梯形PHGC-S△AGC
=
(x+1)(-x2+2x+3)+
(-x2+2x+3+3)(2-x)-
×3×3
=-
x2+
x+3
=-
|
解得
|
故抛物线为y=-x2+2x+3
又设直线为y=kx+n过点A(-1,0)及C(2,3)得
|
解得
|
故直线AC为y=x+1;
(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),
故直线DN′的函数关系式为y=-
1 |
5 |
21 |
5 |
当M(3,m)在直线DN′上时,MN+MD的值最小,
则m=-
1 |
5 |
21 |
5 |
18 |
5 |
(3)由(1)、(2)得D(1,4),B(1,2),
∵点E在直线AC上,
设E(x,x+1),
①如图2,当点E在线段AC上时,点F在点E上方,
则F(x,x+3),
∵F在抛物线上,
∴x+3=-x2+2x+3,
解得,x=0或x=1(舍去)
∴E(0,1);
②当点E在线段AC(或CA)延长线上时,点F在点E下方,
则F(x,x-1)
由F在抛物线上
∴x-1=-x2+2x+3
解得x=
1-
| ||
2 |
1+
| ||
2 |
∴E(
1-
| ||
2 |
3-
| ||
2 |
1+
| ||
2 |
3+
| ||
2 |
综上,满足条件的点E的坐标为(0,1)、(
1-
| ||
2 |
3-
| ||
2 |
1+
| ||
2 |
3+
| ||
2 |
(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,-x2+2x+3)
∴PQ=(-x2+2x+3)-(x+1)
=-x2+x+2
又∵S△APC=S△APQ+S△CPQ
=
1 |
2 |
=
1 |
2 |
=-
3 |
2 |
1 |
2 |
27 |
8 |
∴面积的最大值为
27 |
8 |
方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,
设Q(x,x+1),则P(x,-x2+2x+3)
又∵S△APC=S△APH+S直角梯形PHGC-S△AGC
=
1 |
2 |
1 |
2 |
1 |
2 |
=-
3 |
2 |
3 |
2 |
=-
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载