以△ABC的边AB、AC为直角边向外作等腰直角△ABD和等腰直角△ACE,M是BC中点,连接AM和DE.(1)如图1,△

以△ABC的边AB、AC为直角边向外作等腰直角△ABD和等腰直角△ACE,M是BC中点,连接AM和DE.(1)如图1,△ABC中∠BAC=90°时,AM与ED大小的关系是... 以△ABC的边AB、AC为直角边向外作等腰直角△ABD和等腰直角△ACE,M是BC中点,连接AM和DE.(1)如图1,△ABC中∠BAC=90°时,AM与ED大小的关系是______.AM与ED的位置关系是______;(2)如图2,△ABC为一般三角形时线段AM与ED的关系是______.试证明你的结论;(3)如图3,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段AM与DE之间的关系,不要求证明你的结论. 展开
 我来答
血刺晓星ulCJ
推荐于2017-09-06 · 超过43用户采纳过TA的回答
知道答主
回答量:97
采纳率:100%
帮助的人:88.1万
展开全部
解答:解:(1)如图,延长AM到N,使AM=MN,连接BN,延长MA交DE于H,
易证△BMN≌△CMA,
则BN=AC=AD,∠ABN=∠ABC+∠CBN=∠ABC+∠ACB=90°,
∴△ADE≌△ACB,
∴ED=AN=2AM,
∵∠BAN+∠DAH=90°,
∴∠HDA+∠DAH=90°.
∴AM⊥ED.
故答案为:ED=2AM,AM⊥ED;

(2)ED=2AM,AM⊥ED;
证明:延长AM到N,使MN=AM,连BN,则ABNC是平行四边形.
∴AC=BN,∠ABN+∠BAC=180°
又∵∠DAE+∠BAC=180°,
∴∠ABN=∠DAE.
再证:△DAE≌△BAN
∴DE=2AM,∠BAN=∠EAD.
延长MN交DE于K,
∵∠BAN+∠DAK=90°,
∴∠KDA+∠DAK=90°.
∴AM⊥ED.

(3)ED=2AM,AM⊥ED.
于碧波的路条
2015-08-18 · TA获得超过1.4万个赞
知道大有可为答主
回答量:3539
采纳率:82%
帮助的人:529万
展开全部
解:(1)如图,延长AM到N,使AM=MN,连接BN,延长MA交DE于H,
易证△BMN≌△CMA,
则BN=AC=AD,∠ABN=∠ABC+∠CBN=∠ABC+∠ACB=90°,
所以,△ADE≌△ACB,
所以,ED=AN=2AM,
故答案为:ED=2AM,AM⊥ED;

(2)ED=2AM,AM⊥ED;
证明:延长AM到N,使MN=AM,连BN,则ABNC是平行四边形.
∴AC=BN,∠ABN+∠BAC=180°
又∵∠DAE+∠BAC=180°,
∴∠ABN=∠DAE.
再证:△DAE≌△BAN
∴DE=2AM,∠BAN=∠EAD.
延长MN交DE于K,
∵∠BAN+∠DAK=90°,
∴∠KDA+∠DAK=90°.
∴AM⊥ED.

(3)ED=2AM,AM⊥ED.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式