求一道数学题的解
如图,AB是⊙O的直径,AE平分∠BAF交⊙O于E,过E点作直线与AF垂直交AF延长线于D点,且交AB于C点.1.求证:CD与⊙O相切于点E2.若CE*DE=15/4,A...
如图,AB是⊙O的直径,AE平分∠BAF交⊙O于E,过E点作直线与AF垂直交AF延长线于D点,且交AB于C点.
1.求证:CD与⊙O相切于点E
2.若CE*DE=15/4,AD=3,求圆O的直径和∠AED的正切值
第一问很简单,主要是第二问 展开
1.求证:CD与⊙O相切于点E
2.若CE*DE=15/4,AD=3,求圆O的直径和∠AED的正切值
第一问很简单,主要是第二问 展开
2个回答
展开全部
1.你会我不说了
2.设DE = x, CE = y,
Rt△ADE中, AE^2 = AD^2 + DE^2 = 9+x^2 (1)
由1可知 OE//AD, 那么 △OEC∽ △ADC
OE/AD = CE/CD, 得 OE = 3y/(x+y)
AB = 6y/(x+y), (2)
AB是直径, ∠AEB =∠ADE =90, ∠EAB = ∠ EAD
△ADE∽ △AEB
AB/AE = AE/AD
AE^2 = AB*AD
把(1)(2)带入上式
9+x^2 = 18y/(x+y),
即 (9+x^2)(x+y) - 18 y=0,
两边都乘以 x, 将 xy = 15/4 带入
(9+x^2)(x^2 + xy) - 18xy = 0
x^4 + (9 + 15/4) x^2 - 15/4 *9 = 0
解得 x^2 = 9/4 ( x^2 = -15舍去)
x = 3/2,
y = 15/4/x = 5/2
那么AB=6y/(x+y)=15/4
tan ∠AED = AD/AE = 3/x = 2
2.设DE = x, CE = y,
Rt△ADE中, AE^2 = AD^2 + DE^2 = 9+x^2 (1)
由1可知 OE//AD, 那么 △OEC∽ △ADC
OE/AD = CE/CD, 得 OE = 3y/(x+y)
AB = 6y/(x+y), (2)
AB是直径, ∠AEB =∠ADE =90, ∠EAB = ∠ EAD
△ADE∽ △AEB
AB/AE = AE/AD
AE^2 = AB*AD
把(1)(2)带入上式
9+x^2 = 18y/(x+y),
即 (9+x^2)(x+y) - 18 y=0,
两边都乘以 x, 将 xy = 15/4 带入
(9+x^2)(x^2 + xy) - 18xy = 0
x^4 + (9 + 15/4) x^2 - 15/4 *9 = 0
解得 x^2 = 9/4 ( x^2 = -15舍去)
x = 3/2,
y = 15/4/x = 5/2
那么AB=6y/(x+y)=15/4
tan ∠AED = AD/AE = 3/x = 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询