如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的
如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F.(1)当四边形...
如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F.(1)当四边形OBCE是矩形时,求点C的坐标;(2)如图2,若⊙C与y轴相切于点D,求⊙C的半径r;(3)求m与n之间的函数关系式;(4)在⊙C的移动过程中,能否使△OEF是等边三角形(只回答“能”或“不能”)
展开
1个回答
展开全部
(1)如图1,当x=0时,y=3;当y=0时,x=4
∴A(4,0),B(0,3),
∴OA=4,OB=3,AB=5,
连接CF,
当四边形OBCE为矩形时,有CF=CE=OB=3,CB∥x轴,
∴∠CBF=∠BAO
∵⊙C与直线AB相切于点F,
∴CF⊥AB于点F
∴∠CFB=∠BOA,
又∵CF=OB,
∴△CBF≌△BAO,
∴CB=AB=5,
∴点C的坐标为(-5,3);
(2)如图2,连接CE、CF、CD,
∵⊙C与x轴、y轴、AB分别相切于E、D、F,
∴由切线长定理得AF=AE,BF=BD,OD=OE,
∴AE=
(AB+OA+OB)=6,
由切线性质定理得,CE⊥x轴于点E,CD⊥y轴于点D
∴四边形CEOD为矩形,
又∵CE=CD,
∴矩形CEOD为正方形,
∴OE=CE=r,
∵OE=AE-OA=6-4=2,
∴⊙C的半径为2;
(3)如图1,延长EC交AB于G,连接CF,则CF=CE=n,
∵⊙C与x轴相切于点E,
∴GE⊥AE于点E,
∴EG∥y轴,
∴∠CGF=∠OBA,
又由(1)得∠GFC=∠BOA=90°,
∴△FCG∽△OAB,
∴
=
,
∴CG=
n,
又∵GE=CG+CE=
n+n=
n,
又∵AE=OA+OE=4-m,
∴在Rt△AEG中,tan∠EAG=
=
,
在Rt△AOB中,tan∠BAO=
=
,
∴
=
,
∴m=4-3n;
(4)不能.
∵∠CGF=∠OBA,而tan∠OBA≠tan30°,
∴产生了矛盾,即三角形OEF不是等边三角形.
∴A(4,0),B(0,3),
∴OA=4,OB=3,AB=5,
连接CF,
当四边形OBCE为矩形时,有CF=CE=OB=3,CB∥x轴,
∴∠CBF=∠BAO
∵⊙C与直线AB相切于点F,
∴CF⊥AB于点F
∴∠CFB=∠BOA,
又∵CF=OB,
∴△CBF≌△BAO,
∴CB=AB=5,
∴点C的坐标为(-5,3);
(2)如图2,连接CE、CF、CD,
∵⊙C与x轴、y轴、AB分别相切于E、D、F,
∴由切线长定理得AF=AE,BF=BD,OD=OE,
∴AE=
1 |
2 |
由切线性质定理得,CE⊥x轴于点E,CD⊥y轴于点D
∴四边形CEOD为矩形,
又∵CE=CD,
∴矩形CEOD为正方形,
∴OE=CE=r,
∵OE=AE-OA=6-4=2,
∴⊙C的半径为2;
(3)如图1,延长EC交AB于G,连接CF,则CF=CE=n,
∵⊙C与x轴相切于点E,
∴GE⊥AE于点E,
∴EG∥y轴,
∴∠CGF=∠OBA,
又由(1)得∠GFC=∠BOA=90°,
∴△FCG∽△OAB,
∴
CF |
OA |
CG |
AB |
∴CG=
5 |
4 |
又∵GE=CG+CE=
5 |
4 |
9 |
4 |
又∵AE=OA+OE=4-m,
∴在Rt△AEG中,tan∠EAG=
GE |
AE |
| ||
4?m |
在Rt△AOB中,tan∠BAO=
OB |
OA |
3 |
4 |
∴
| ||
4?m |
3 |
4 |
∴m=4-3n;
(4)不能.
∵∠CGF=∠OBA,而tan∠OBA≠tan30°,
∴产生了矛盾,即三角形OEF不是等边三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询