如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的

如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F.(1)当四边形... 如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F.(1)当四边形OBCE是矩形时,求点C的坐标;(2)如图2,若⊙C与y轴相切于点D,求⊙C的半径r;(3)求m与n之间的函数关系式;(4)在⊙C的移动过程中,能否使△OEF是等边三角形(只回答“能”或“不能”) 展开
 我来答
奈落00447
推荐于2017-09-20 · TA获得超过313个赞
知道答主
回答量:132
采纳率:0%
帮助的人:55.5万
展开全部
(1)如图1,当x=0时,y=3;当y=0时,x=4
∴A(4,0),B(0,3),
∴OA=4,OB=3,AB=5,
连接CF,
当四边形OBCE为矩形时,有CF=CE=OB=3,CB∥x轴,
∴∠CBF=∠BAO
∵⊙C与直线AB相切于点F,
∴CF⊥AB于点F
∴∠CFB=∠BOA,
又∵CF=OB,
∴△CBF≌△BAO,
∴CB=AB=5,
∴点C的坐标为(-5,3);

(2)如图2,连接CE、CF、CD,
∵⊙C与x轴、y轴、AB分别相切于E、D、F,
∴由切线长定理得AF=AE,BF=BD,OD=OE,
∴AE=
1
2
(AB+OA+OB)=6,
由切线性质定理得,CE⊥x轴于点E,CD⊥y轴于点D
∴四边形CEOD为矩形,
又∵CE=CD,
∴矩形CEOD为正方形,
∴OE=CE=r,
∵OE=AE-OA=6-4=2,
∴⊙C的半径为2;

(3)如图1,延长EC交AB于G,连接CF,则CF=CE=n,
∵⊙C与x轴相切于点E,
∴GE⊥AE于点E,
∴EG∥y轴,
∴∠CGF=∠OBA,
又由(1)得∠GFC=∠BOA=90°,
∴△FCG∽△OAB,
CF
OA
CG
AB

∴CG=
5
4
n,
又∵GE=CG+CE=
5
4
n+n
=
9
4
n,
又∵AE=OA+OE=4-m,
∴在Rt△AEG中,tan∠EAG=
GE
AE
=
9
4
n
4?m

在Rt△AOB中,tan∠BAO=
OB
OA
3
4

9
4
n
4?m
=
3
4

∴m=4-3n;

(4)不能.
∵∠CGF=∠OBA,而tan∠OBA≠tan30°,
∴产生了矛盾,即三角形OEF不是等边三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式