将两个全等的直角三角形(△ABC≌△DCE,∠A=∠D=90°)摆放成如图①的形式,使点A、C、D成一直线,我们

将两个全等的直角三角形(△ABC≌△DCE,∠A=∠D=90°)摆放成如图①的形式,使点A、C、D成一直线,我们称之为“K形图”(1)证明:BC⊥CE;(2)如图②,连结... 将两个全等的直角三角形(△ABC≌△DCE,∠A=∠D=90°)摆放成如图①的形式,使点A、C、D成一直线,我们称之为“K形图”(1)证明:BC⊥CE;(2)如图②,连结BE,取BE中点F,连结AF、CF、DF,试判断并证明△AFD的形状. 展开
 我来答
爱刷bgZW11B
推荐于2017-10-04 · TA获得超过116个赞
知道答主
回答量:182
采纳率:0%
帮助的人:149万
展开全部
解答:(1)证明:∵△ABC≌△DCE,∠A=∠D=90°,
∴∠B=∠DCE,∠ACB+∠B=90°,
∴∠ACB+∠DCE=90°,
∴∠BCE=180°-90°=90°,
∴BC⊥CE.

(2)△AFD是等腰直角三角形,
理由是:延长AF交DE延长线于M,
∵∠BAC=∠CDE=90°,
∴∠BAC+∠CDE=180°
∴AB∥DE,
∴△ABF∽△MEF,
AB
EM
=
BF
EF
=
AF
FM

∵F为BE中点,
∴BF=EF,
∴AB=EM,AF=FM,
∵△ABC≌△DCE,
∴AC=DE,DC=AB=EM,
∴AD=DM,
∵∠ADM=90°,
∴DF⊥AM,DF=AF=FM,
即△AFD是等腰直角三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式