已知如图抛物线Y=ax^2+bx+c与Y轴交于c点,与x轴交于A,B两点,A点在B点左侧,点B坐标为(1,0),OC=3OB求解析

 我来答
頖縌の小點4e4d
2012-04-05
知道答主
回答量:20
采纳率:0%
帮助的人:8.7万
展开全部
分析:(1)已知了B点坐标,易求得OB、OC的长,进而可将B、C的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式.
(2)根据A、C的坐标,易求得直线AC的解析式.由于AB、OC都是定值,则△ABC的面积不变,若四边形ABCD面积最大,则△ADC的面积最大;可过D作x轴的垂线,交AC于M,x轴于N;易得△ADC的面积是DM与OA积的一半,可设出N点的坐标,分别代入直线AC和抛物线的解析式中,即可求出DM的长,进而可得出四边形ABCD的面积与N点横坐标间的函数关系式,根据所得函数的性质即可求出四边形ABCD的最大面积.

解:(1)∵B(1,0),
∴B=1;
∵OC=3BO,
∴C(0,-3);
∵y=ax2+3ax+c过B(1,0)、C(0,-3),
∴c=-3 a+3a+c=0 ;
解这个方程组,得 a=3/4 c=-3
∴抛物线的解析式为: y=(3/4)x的平方+9/4x-3

(2)过点D作DM‖y轴分别交线段AC和x轴于点M、N
在 y=(3/4)x的平方+9/4x-3 中,令y=0,
得方程 (3/4)x的平方+9/4x-3=0
解这个方程,得x1=-4,x2=1
∴A(-4,0)
设直线AC的解析式为y=kx+b
∴ 0=-4K+b b=-3
解这个方程组,得 k=-3/4 b=-3
∴AC的解析式为: y=-3/4x-3
∵S四边形ABCD=S△ABC+S△ADC
= 15/2+1/2DM(AN+CN)
= 15/2+2Dm
设D(x,(3/4)x的平方+9/4x-3 )M(x,-3/4x-3)
DM=-3/4x-3-(3/4)x的平方+9/4x-3=-3/4(x+2)的平方+3,
当x=-2时,DM有最大值3
此时四边形ABCD面积有最大值 27/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式