一道数学解析几何问题
已知抛物线y2=4x,点M(1,0)关于y轴对称点为N,直线L过点M交抛物线于AB两点。(1)证明:NA,NB的斜率互为相反数;(2)求△ANB面积最小值(3)第三问不要...
已知抛物线y2=4x,点M(1,0)关于y轴对称点为N,直线L过点M交抛物线于AB两点。
(1)证明:NA,NB的斜率互为相反数;
(2)求△ANB面积最小值
(3)第三问不要求过程
若M(m,0)时,(1)是否仍成立?△ANB面积最小值又是多少? 展开
(1)证明:NA,NB的斜率互为相反数;
(2)求△ANB面积最小值
(3)第三问不要求过程
若M(m,0)时,(1)是否仍成立?△ANB面积最小值又是多少? 展开
1个回答
展开全部
N(-1,0)
直线L:x=ty+1,与抛物线y2=4x联立后得
y^2-4ty-4=0,
y1+y2=4t,y1y2=-4
(1)kNA+kNB=y1/(y1^2/4 + 1) +y2/(y2^2/4 + 1)
=[1/4y1y2^2+1/4y1^2y2+y1+y2]/(y1^2/4 + 1)(y2^2/4 + 1)
=(y1y2/4 +1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-1+1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1) =0
(2)S=1/2*|AB|*d
d=|-2|/√(1+t^2)=2/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(1+t^2)
=4(1+t^2)
S=1/2*|AB|*d
=1/2*4(1+t^2)*2/√(1+t^2)
=4√(1+t^2)
当t=0,Smin=4
(3)若M(m,0)时,(1)仍成立
直线L:x=ty+m,与抛物线y2=4x联立后得
y^2-4ty-4m=0,
y1+y2=4t,y1y2=-4m
(1)kNA+kNB=y1/(y1^2/4 + m) +y2/(y2^2/4 + m)
=[1/4y1y2^2+1/4y1^2y2+my1+my2]/(y1^2/4 + m)(y2^2/4 + m)
=(y1y2/4 +m)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-m+m)(y1+y2)/(y1^2/4 + m)(y2^2/4 + m) =0
(2)S=1/2*|AB|*d
d=|-2m|/√(1+t^2)=|2m|/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(m+t^2)
S=1/2*|AB|*d
=1/2*√(1+t^2)*√16(m+t^2)*|2m|/√(1+t^2)
=|m|*√16(m+t^2)
=4√m^2(m+t^2)
令u=m^2(m+t^2),u'=2m^2*t=0,
当t>0,u'>0,当t<0,u'<0
t=0是极小值点,
当t=0,Smin=4√m^3=4m*√m
直线L:x=ty+1,与抛物线y2=4x联立后得
y^2-4ty-4=0,
y1+y2=4t,y1y2=-4
(1)kNA+kNB=y1/(y1^2/4 + 1) +y2/(y2^2/4 + 1)
=[1/4y1y2^2+1/4y1^2y2+y1+y2]/(y1^2/4 + 1)(y2^2/4 + 1)
=(y1y2/4 +1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-1+1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1) =0
(2)S=1/2*|AB|*d
d=|-2|/√(1+t^2)=2/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(1+t^2)
=4(1+t^2)
S=1/2*|AB|*d
=1/2*4(1+t^2)*2/√(1+t^2)
=4√(1+t^2)
当t=0,Smin=4
(3)若M(m,0)时,(1)仍成立
直线L:x=ty+m,与抛物线y2=4x联立后得
y^2-4ty-4m=0,
y1+y2=4t,y1y2=-4m
(1)kNA+kNB=y1/(y1^2/4 + m) +y2/(y2^2/4 + m)
=[1/4y1y2^2+1/4y1^2y2+my1+my2]/(y1^2/4 + m)(y2^2/4 + m)
=(y1y2/4 +m)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-m+m)(y1+y2)/(y1^2/4 + m)(y2^2/4 + m) =0
(2)S=1/2*|AB|*d
d=|-2m|/√(1+t^2)=|2m|/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(m+t^2)
S=1/2*|AB|*d
=1/2*√(1+t^2)*√16(m+t^2)*|2m|/√(1+t^2)
=|m|*√16(m+t^2)
=4√m^2(m+t^2)
令u=m^2(m+t^2),u'=2m^2*t=0,
当t>0,u'>0,当t<0,u'<0
t=0是极小值点,
当t=0,Smin=4√m^3=4m*√m
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询