数据回归分析的目的和意义是什么 20
数据回归分析的目的和意义是将一系列影响因素和结果进行一个拟合,拟合出一个方程,然后通过将这个方程应用到其他同类事件中,可以进行预测。
在统计学中,回归分析指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
大数据要分析的数据类型主要有四大类:
1、交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。
2、人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。
3、移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。
4、机器和传感器数据(MACHINE AND SENSOR DATA)
这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。
数据回归分析的目的和意义是将一系列影响因素和结果进行一个拟合,拟合出一个方程,然后通过将这个方程应用到其他同类事件中,可以进行预测。
在统计学中,回归分析指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
扩展资料:
回归分析研究的主要问题是:
(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;
(2)对求得的回归方程的可信度进行检验;
(3)判断自变量X对因变量Y有无影响;
(4)利用所求得的回归方程进行预测和控制。
所谓回归,就是向某个理想的状态或平衡状态的趋向发展,通过回归可以找出哪些影响因素,对结果的影响规律
2、规律属于何种
广告 您可能关注的内容 |