狄利克雷函数任一点的单侧极限是否存在 20

任一点的极限是肯定不存在的,那么单侧极限呢?请简单说明谢谢... 任一点的极限是肯定不存在的,那么单侧极限呢?请简单说明谢谢 展开
 我来答
帐号已注销
2021-10-16 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

狄利克雷函数任一点的单侧极限也是不存在的,证明和双侧极限不存在的证明一样。

在一点a极限存在是意味着当x不管用什么方式趋向a时对应的函数值都趋向同一个常数。那么如果a是有理数时:a+1/n也是有理数,D氏函数在这些点上的值D(a+1/n)=0,当n趋向无穷时,a+1/n趋向a,对应的D氏函数趋向0。

但这时a+(根号2)/n是无理数,D氏函数在这些点上的值D(a+根号(2)/n)=1,当n趋向无穷时,a+根号(2)/n趋向a, 而对应的D氏函数趋向1。说明当x趋向a时极限不存在。

分析性质

1、处处不连续。

2、处处不可导。

3、在任何区间内黎曼不可积。

4、函数是可测函数。

5、在单位区间[0,1]上勒贝格可积,且勒贝格积分值为0(且任意区间<a,b>以及R上甚至任何R的可测子集上(区间不论开闭和是否有限)上的勒贝格积分值为0 )。

kent0607
高粉答主

2015-09-21 · 关注我不会让你失望
知道大有可为答主
回答量:6.2万
采纳率:77%
帮助的人:7110万
展开全部
  狄利克雷函数任一点的单侧极限也是不存在的,证明和双侧极限不存在的证明一样。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式