在△ABC中,sinC=(sinA=sinB)/(cosA=cosB),求△ABC形状

 我来答
loyal0915
2011-03-25 · TA获得超过2773个赞
知道答主
回答量:203
采纳率:0%
帮助的人:242万
展开全部
在△ABC中,若(sinA+sinB)/(cosA+cosB)=sinC,试判定△ABC的形状
解法1 (sinA+sinB)/(cosA+cosB)=sinC
<==>sinA+sinB=sin(A+B)(cosA+cosB)
<==>sinA+sinB=(sinAcosB+cosAsinB)(cosA+cosB)
<==>sinA+sinB=sinAcosAcosB+sinA(cosB)^2+(cosA)^2sinB)+cosAcosBsinB
<==>sinA[1-(cosB)^2]+sinB[1-(cosA)^2]=(sinA+sinB)cosAcosB
<==>sinA(sinB)^2+sinB(sinA)^2=(sinA+sinB)cosAcosB
<==>sinAsinB(sinA+sinB)=(sinA+sinB)cosAcosB
<==>sinAsinB=cosAcosB
<==>cosAcosB-sinAsinB=0
<==>cos(A+B)=0
<==>cosC=0
<==>C=90º
所以△ABC是直角三角形.

解法2 (转化为边的关系)由正弦定理和余弦定理得
(sinA+sinB)/(cosA+cosB)=sinC
<==>sinA+sinB=sinC(cosA+cosB)
<==>a+b=c[(b^2+c^2-a^2)/(2bc)+(c^2+a^2-b^2)/(2ca)]
<==>2ab(a+b)=a(b^2+c^2-a^2)+b(c^2+a^2-b^2)
<==>ab(a+b)=(a+b)c^2-(a^3+b^3)
<==>ab(a+b)=(a+b)[c^2-(a^2-ab+b^2)]
<==>a^2+b^2=c^2
所以△ABC是直角三角形.
536758220
2011-03-24
知道答主
回答量:9
采纳率:0%
帮助的人:1.4万
展开全部
括号里的是sinA-sinB,cosA—cosB么?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1will1
2011-03-25
知道答主
回答量:10
采纳率:0%
帮助的人:0
展开全部
6666
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式