求对称矩阵特征值与特征向量的雅克比法
展开全部
雅可比方法的基本思想是通过一系列的由平面旋转矩阵构成的正交变换将实对称矩阵逐步化为对角阵,从而得到 的全部特征值及其相应的特征向量.首先引进 中的平面旋转变换.变换
(7)
记为 ,其中
(8)
则称 为 中 平面内的一个平面旋转变换,称为 平面内的平面旋转矩阵.容易证明 具有如下简单性质:
① 为正交矩阵.
② 的主对角线元素中除第 个与第 个元素为 外,其它元素均为1;非对角线元素中除第 行第 列元素为 ,第 行第 列元素为 外,其它元素均为零.
③ 只改变 的第 行与第 行元素,只改变 的第 列与第 列元素,所以 只改变 的第 行、第 行、第 列、第 列元素.
设 为 阶实对称矩阵,为一对非对角线元素.令
则 为实对称矩阵,且 与 有相同的特征值.通过直接计算知
(7)
记为 ,其中
(8)
则称 为 中 平面内的一个平面旋转变换,称为 平面内的平面旋转矩阵.容易证明 具有如下简单性质:
① 为正交矩阵.
② 的主对角线元素中除第 个与第 个元素为 外,其它元素均为1;非对角线元素中除第 行第 列元素为 ,第 行第 列元素为 外,其它元素均为零.
③ 只改变 的第 行与第 行元素,只改变 的第 列与第 列元素,所以 只改变 的第 行、第 行、第 列、第 列元素.
设 为 阶实对称矩阵,为一对非对角线元素.令
则 为实对称矩阵,且 与 有相同的特征值.通过直接计算知
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询