初中几何证明题
已知:如图,正方形ABCD中,把含有45°的三角板的45°顶点与A重合,三角板的两边与正方形的对角线BD交于M、N。求线段BN、MN、ND的关系并证明。...
已知:如图,正方形ABCD中,把含有45°的三角板的45°顶点与A重合,三角板的两边与正方形的对角线BD交于M、N。求线段BN、MN、ND的关系并证明。
展开
2个回答
展开全部
解:在正方形ABCD的外侧作角BAH=角DAN, 并在AH上截取AH=AN. 连结BH. MH
则因为 ABCD是正方形,AB=AD
所以三角形ABH全等于三角形ADN
所以 BH=ND, 角ABH=角ADN=45度
所以 角MBH=90度
在直慧袭族角三角形MHB中 由勾股定理 得:MH^2=BM^2+BH^2
因为ABCD是正方形且角MAN=45度
所以 角DAN+角MAB=45度
因为 角DAN=角BAH (作的前弊辅助线)
所以 角MAH=45度 所以 角MAH=角MAN=45度
又因为 AH=AN, AM=AM
所以 三角形AMH全等于三角形AMN
所以 MH=MN
所以禅瞎 MN^2=BM^2+ND^2
则因为 ABCD是正方形,AB=AD
所以三角形ABH全等于三角形ADN
所以 BH=ND, 角ABH=角ADN=45度
所以 角MBH=90度
在直慧袭族角三角形MHB中 由勾股定理 得:MH^2=BM^2+BH^2
因为ABCD是正方形且角MAN=45度
所以 角DAN+角MAB=45度
因为 角DAN=角BAH (作的前弊辅助线)
所以 角MAH=45度 所以 角MAH=角MAN=45度
又因为 AH=AN, AM=AM
所以 三角形AMH全等于三角形AMN
所以 MH=MN
所以禅瞎 MN^2=BM^2+ND^2
追问
不用勾股定理可以做吗?
追答
不用勾股定理当然也可以做,只是繁一点。因为勾股定理是由直角三角形中的射影定理推导也来的。也就是说:你可以用射影定理来做。问题是你知道射影定理吗?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询