如图,在Rt△ABC中,△ACB=90 ,CD⊥AB于点D,分别以AC、BC为边向三角形外作等边三角形△ACE和等边△BCF,

如图,在Rt△ABC中,△ACB=90,CD⊥AB于点D,分别以AC、BC为边向三角形外作等边三角形△ACE和等边△BCF,DE、DF,试说明△ADE∽△CDF... 如图,在Rt△ABC中,△ACB=90 ,CD⊥AB于点D,分别以AC、BC为边向三角形外作等边三角形△ACE和等边△BCF,DE、DF,试说明△ADE ∽△CDF 展开
ZCX0874
2011-03-27 · TA获得超过3万个赞
知道大有可为答主
回答量:6764
采纳率:75%
帮助的人:2859万
展开全部
证:连接DE,CF.
由题设得:△ADC~△BDC. (Rt△,A.A.A)
∴AD:CD=AC:BC=AC:BC=AE:CF.
∴AD:AE=CD:CF.
又,∠BCD=∠DAC (与同一角互余的角相等)
∠BDC+60°=BCF
∠DAC+60°=∠BAE
∴ ∠BCF=∠DAE
∴△ADE~△CDF (两组对应边成比例,其夹角相等)。
证毕。
赫日消霜雪
2011-03-27 · TA获得超过9819个赞
知道大有可为答主
回答量:1118
采纳率:0%
帮助的人:1554万
展开全部
易知△ACD ∽△CBD,∠CAD=∠BCD,AC/AD=CB/CD。
因∠EAD=60°+∠CAD、 ∠FCD=60°+∠BCD,得∠EAD=∠FCD.
又已知AC=AE、 CB=CF,结合AC/AD=CB/CD,得AE/AD=CF/CD,
因∠EAD=∠FCD、 AE/AD=CF/CD,故△ADE ∽△CDF。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1435397496
2011-03-27 · TA获得超过697个赞
知道小有建树答主
回答量:317
采纳率:96%
帮助的人:181万
展开全部
∠CAD=∠DCB,∠CAE=∠BCF=60
所以∠DAE=∠DCF (1)
在Rt△ABC中有AD:CD=AC:BC,又BC=CF,AC=AE
所以AD:CD=AE:CF (2)
由(1) (2)
的△ADE ∽△CDF

这不就是解答吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式