计算曲线积分,∫(x^2+y^2)dx+2xydy,其中l:沿直线从点A(-1,1)到点B(0,1),再沿单位圆x^2+y^2=1到点C(1,0)
1个回答
展开全部
在AB上直接计算即可,注意此时dy恒等于0
在AB上,∫(x^2+y^2)dx+2xydy=∫(-1,0)(x^2+1)dx=4/3
在BC的曲线上,在BCO这块扇形区域对该式用格林公式
∫(x^2+y^2)dx+2xydy
= -∫∫( -2y+2y)dxdy+∫(B到O,直线)(x^2+y^2)dx+2xydy+∫(O到C,直线)(x^2+y^2)dx+2xydy
-∫∫( -2y+2y)dxdy= -∫∫0dxdy= 0
B到O的直线积分dx恒=0,而dy的积分因为x=0,因此也是0
O到C的直线积分dy恒=0,∫(O到C,直线)(x^2+y^2)dx+2xydy=∫(0,1)x^2dx=1/3
因此原曲线积分的积分值是4/3+0+0+1/3=5/3
在AB上,∫(x^2+y^2)dx+2xydy=∫(-1,0)(x^2+1)dx=4/3
在BC的曲线上,在BCO这块扇形区域对该式用格林公式
∫(x^2+y^2)dx+2xydy
= -∫∫( -2y+2y)dxdy+∫(B到O,直线)(x^2+y^2)dx+2xydy+∫(O到C,直线)(x^2+y^2)dx+2xydy
-∫∫( -2y+2y)dxdy= -∫∫0dxdy= 0
B到O的直线积分dx恒=0,而dy的积分因为x=0,因此也是0
O到C的直线积分dy恒=0,∫(O到C,直线)(x^2+y^2)dx+2xydy=∫(0,1)x^2dx=1/3
因此原曲线积分的积分值是4/3+0+0+1/3=5/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询