高中数学选修2-2第一章总结
1个回答
展开全部
1. 导数及其应用
(约24课时) (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。 ②通过函数图象直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数的导数。 ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 )的导数。 ③会使用导数公式表。 (3)导数在研究函数中的应用 ①借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。 ②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例。 例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用(参见选修1-1案例中的例5)。 (5)定积分与微积分基本定理 ①通过求曲边梯形的面积、变力做功等,从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。 ②通过变速运动物体在某段时间内的速度与路程的关系,直观了解微积分基本定理的含义(参见例1)。
2. 推理与证明
(约8课时) (1)合情推理与演绎推理 ①了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修1-2案例中的例2、例3)。 ②体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。 ③通过具体实例,了解合情推理和演绎推理之间的联系和差异。 (2)直接证明与间接证明 ①了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。 ②了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。 (3)数学归纳法 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 (4)数学文化 ①通过对实例的介绍(如欧几里得《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。 ②介绍计算机在自动推理领域和数学证明中的作用。
3. 数系的扩充与复数的引入
(约4课时) (1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 (2)理解复数的基本概念以及复数相等的充要条件。 (3)了解复数的代数表示法及其几何意义。 (4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。。
(约24课时) (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。 ②通过函数图象直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数的导数。 ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 )的导数。 ③会使用导数公式表。 (3)导数在研究函数中的应用 ①借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。 ②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例。 例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用(参见选修1-1案例中的例5)。 (5)定积分与微积分基本定理 ①通过求曲边梯形的面积、变力做功等,从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。 ②通过变速运动物体在某段时间内的速度与路程的关系,直观了解微积分基本定理的含义(参见例1)。
2. 推理与证明
(约8课时) (1)合情推理与演绎推理 ①了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修1-2案例中的例2、例3)。 ②体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。 ③通过具体实例,了解合情推理和演绎推理之间的联系和差异。 (2)直接证明与间接证明 ①了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。 ②了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。 (3)数学归纳法 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 (4)数学文化 ①通过对实例的介绍(如欧几里得《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。 ②介绍计算机在自动推理领域和数学证明中的作用。
3. 数系的扩充与复数的引入
(约4课时) (1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 (2)理解复数的基本概念以及复数相等的充要条件。 (3)了解复数的代数表示法及其几何意义。 (4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询