已知{an}的通项an=(2n-3)*4^n-2 求数列{an}的前n项和Sn

kelwinlam
2011-03-29 · TA获得超过4782个赞
知道小有建树答主
回答量:874
采纳率:0%
帮助的人:731万
展开全部
a1 = -1 * 4^(-1)
a2 = 1 * 4^0
a3 = 3 * 4^1
a4 = 5 * 4^2
......
an = (2n - 3) * 4^(n - 2)
Sn = a1 + a2 + a3 + a4 + a5 +......+ (2n - 3) * 4^(n - 2)
Sn = -1 * 4^(-1) + 1 * 4^0 + 3 * 4^1 + 5 * 4^2+......+ (2n - 3) * 4^(n - 2)----(1)
等式两边同时乘以 4 得
4Sn = -1 * 4^0 + 1 * 4^1 + 3 * 4^2 + 5 * 4^3+......+ (2n - 3) * 4^(n - 1)——--(2)
(1)-(2)得
-3Sn = -1 * 4^(-1) + 2 * 4^0 + 2 * 4^1 + 2 * 4^2 +......+ 2 * 4^(n - 2) - (2n - 3) * 4^(n - 1)
= 2 [ 4^0 + 4^1 + 4^2 +......+ 4^(n - 2)] - (2n - 3) * 4^(n - 1) -1/4
= 2 [4^(n -1) - 1] /3 - (2n - 3) * 4^(n - 1) -1/4
= 4^(n -1) * [ 2 - 3 (2n - 3) ] /3 - 2/3 - 1/4
= 4^(n -1) * (11 - 6n) /3 - 17/12
Sn = 4^(n -1) * (6n - 11) /9 + 17/36
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式