f(x)在【0,π】上连续,且∫(0,π)f(x)dx=0.令F(x)=∫(0,π)f(x)dx,
f(x)在【0,π】上连续,且∫(0,π)f(x)dx=0.令F(x)=∫(0,π)f(x)dx,f(x)在【0,π】上连续,且∫(0,π)f(x)dx=0.令F(x)=...
f(x)在【0,π】上连续,且∫(0,π)f(x)dx=0.令F(x)=∫(0,π)f(x)dx,f(x)在【0,π】上连续,且∫(0,π)f(x)dx=0.令F(x)=∫(0,π)f(x)dx,为什么F(0)=0=F(π)
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询