∫1/ ∫1/(x+³√x)dx

∫1/(x+³√x)dx令³√x=t,得x=t³,dx=3t²dt解(1)∫1/(x+³√x)dx=∫1/(t³... ∫1/(x+³√x)dx 令³√x=t,得x=t³,dx=3t²dt
解(1)∫1/(x+³√x)dx
=∫1/(t³+t )x 3t²dt
=∫1/(t²+1) x 3tdt
=3/2∫1/(1+t²)d(1+t²)
= 3/2 ln(1+t²)+c 正确
解(2)∫1/(x+³√x)dx
=∫1/(t³+t )x 3t²dt
=∫1/(t²+1) x 3tdt
=3/2∫1/(1+t²)dt
= 3/2arctan(1+t²)+c 错误在哪里。
展开
 我来答
教育小百科达人
2019-05-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

令t=6√x

t^6=x

x'=6t^5

原式=∫[1/(t^3+t^2)x6t^5]dt

=∫[6t^2(t^3+t^2)-6t^3]/(t³+t²)dt

=∫[6t^2-6t-6(t³+t²)-6t^2/t³+t²]dt

=∫[6t^2-6t-6(t³+t²)-6-6/t+l]dt

=2t^3-3t^2-6t-6ln(t+1)+C

代入得:2√X-3³√X-6^6√X-6ln(^6√X+1)+C

分子降幂,降到比分母的最高次低,再约掉。

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n)。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!

参考资料来源:百度百科——不定积分

百度网友25e987c1d9
高粉答主

2017-10-21 · 说的都是干货,快来关注
知道大有可为答主
回答量:3903
采纳率:97%
帮助的人:2014万
展开全部

## 凑微分

解法二倒数第二行凑微分后应该是tdt=1/2d(t^2)

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
丘冷萱Ad
2012-11-28 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3983万
展开全部
令x^(1/3)=u,则x=u³,dx=3u²du
∫ 1/[1+x^(1/3)] dx
=∫ 3u²/(1+u) du
=3∫ (u²-1+1)/(1+u) du
=3∫ (u-1) du + 3∫ 1/(1+u) du
=(3/2)u² - 3u + 3ln|u+1| + C
=(3/2)x^(2/3) - 3x^(1/3) + 3ln|x^(1/3)+1| + C

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hhhhhalf
2022-08-11
知道答主
回答量:3
采纳率:0%
帮助的人:1257
展开全部
答案错了,你的解答正确的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式