直线y=kx+b过x轴上的点(3/2,0)且与双曲线y=m/x相交于B(-1/2,4),求直线和双曲线的解析式

qsmm
2011-03-30 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.8亿
展开全部
分析:函数经过一定点,将此点坐标代入函数解析式 (k≠0)即可求得k的值.
解:由题意知点A(3/2,0),点B(-1/2 ,4)在直线y=kx+b上,
由此得:0=3/2k+b
4=-1/2k+b
所以:k=-2
b=3
因为:点B(-1/2,4)双曲线y=k/x上
所以:4=k/-1/2,k=2
所以:双曲线的解析式为y=2/x
百度网友a269df03d6
2011-03-30 · TA获得超过129个赞
知道答主
回答量:61
采纳率:0%
帮助的人:65.1万
展开全部
解:由直线y=kx+b与双曲线y=m/x相交于B(-1/2,4) ; 可得:直线y=kx+b一定过点B(-1/2,4) ,且y=kx+b又过点(3/2,0),则把两个点分别代入直线y=kx+b可得以下方程组:
3/2 k + b = 0
2k + b = 4
解得:k = -2, b = 3
所以直线的解析式为:y = -2x + 3
因为双曲线y=m/x过点B(-1/2,4) , 则把点B代入y=m/x ,可得: 4 = -2 m ,得出:m = -2
所以曲线的解析式为:y = -2/x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
DQ29
2011-03-30
知道答主
回答量:6
采纳率:0%
帮助的人:0
展开全部
将y=kx+b和y=m/x建立方程组,然后分别把(3/2,0)、(-1/2,4)代入可求的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式