18.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧
5个回答
展开全部
解:
如图,分别延长AE、BF交于点H,易知四边形EPFH为平行四边形,故G恰好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN,CD=10-2-2=6,故MN=3,即G的移动路径长为3
如图,分别延长AE、BF交于点H,易知四边形EPFH为平行四边形,故G恰好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN,CD=10-2-2=6,故MN=3,即G的移动路径长为3
参考资料: http://iask.sina.com.cn/b/18068246.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:如图,分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH‖PF,
∵∠B=∠EPA=60°,
∴BH‖PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
∵∠A=∠FPB=60°,
∴AH‖PF,
∵∠B=∠EPA=60°,
∴BH‖PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如图,分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询