展开全部
∫[0,π]dx∫[0,sinx] ( x^2-y^2)dy
=∫[0,π]x^2sinx-(sinx)^3/3dx
=-π^2+∫[0,π]2xcosxdx+(1/3)∫[0,π]sinx^2dcosx
=-π^2-2π-2∫[0,π]cosxdx+(1/3)∫[0,π]dcosx-(1/3)∫[0,π](cosx)^2dcosx
= -π^2-2π+π/3+(-2/3)-(-2/9)=-π^2-5π/3-4/9
∫x^2sinxdx=-x^2cosx+∫2xcosxdx
=∫[0,π]x^2sinx-(sinx)^3/3dx
=-π^2+∫[0,π]2xcosxdx+(1/3)∫[0,π]sinx^2dcosx
=-π^2-2π-2∫[0,π]cosxdx+(1/3)∫[0,π]dcosx-(1/3)∫[0,π](cosx)^2dcosx
= -π^2-2π+π/3+(-2/3)-(-2/9)=-π^2-5π/3-4/9
∫x^2sinxdx=-x^2cosx+∫2xcosxdx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询