2个回答
展开全部
举个例子吧
1
-
1/2
+
1/3
-
1/4
+
1/5
-
...
1
-
(1/2)x
+
(1/3)x^2
-
(1/4)x^4
+
(1/5)x^5
-
...
下面做一对比,对比的内容是一一对应的,希望你认真看一下,对你考试有帮助。
第一个是数项级数。
(1)它的通项是个“数”,即an=[(-1)^(n-1)]/n。
(2)它的敛散性是确定的,因为这里面都是“数”,没有变量,所以最后结果要么收敛,要么发散,是确定的,两者只能取其一。
(3)对于数项级数,考试的题目只有一句话,“判断这个级数是收敛还是发散?”,原因就是上面说的,它的敛散性是确定的,你要做的是判断出它到底收敛还是发散!
(4)解题步骤一般是:
先判断通项极限是不是为0,如果不是则直接写发散;如果是,再判断是正项级数还是交错级数(我举得例子是交错级数),如果是正项级数,用比值审敛法,比较审敛法等判断,如果是交错级数,用莱布尼兹审敛法判断。本题用莱布尼兹审敛法,交错级数的通项递减且趋于0,所以收敛。
第二个是函数项级数
(1)它的通项是个函数,说白了就是通项里含有变量x,即an=[(-x)^(n-1)]/n。
(2)它的敛散性是不确定的,因为x取不同的值的时候,他就是不同的数项级数,(比如x=1就和第一个例子的级数一样,x=2就又变成另一个级数了)。这些不同的数项级数有的发散有的收敛。取决于x取什么值。
(3)对于函数项级数,考试的题目一般是,“求这个函数项级数的收敛域和收敛区间”,说白了就是问你:“x取什么值的时候,这个级数收敛,x取什么值的时候,这个级数发散?”
(4)解题步骤一般是:
先算出收敛半径,(比如我举得例子,算出收敛半径是1),那就是说,这个函数项级数在±1之内都是收敛的,比如x=0.9代入,肯定收敛的;而在±1之外是发散的,比如x=1.1代入,肯定是发散的。但是端点-1和+1的情况还不知道,需要另外判断。方法就是直接代入-1和+1,变成两个数项级数来判断。最终得到,-1时发散,而+1时收敛。所以最终考卷上写:x属于(-1,1]时,收敛。
1
-
1/2
+
1/3
-
1/4
+
1/5
-
...
1
-
(1/2)x
+
(1/3)x^2
-
(1/4)x^4
+
(1/5)x^5
-
...
下面做一对比,对比的内容是一一对应的,希望你认真看一下,对你考试有帮助。
第一个是数项级数。
(1)它的通项是个“数”,即an=[(-1)^(n-1)]/n。
(2)它的敛散性是确定的,因为这里面都是“数”,没有变量,所以最后结果要么收敛,要么发散,是确定的,两者只能取其一。
(3)对于数项级数,考试的题目只有一句话,“判断这个级数是收敛还是发散?”,原因就是上面说的,它的敛散性是确定的,你要做的是判断出它到底收敛还是发散!
(4)解题步骤一般是:
先判断通项极限是不是为0,如果不是则直接写发散;如果是,再判断是正项级数还是交错级数(我举得例子是交错级数),如果是正项级数,用比值审敛法,比较审敛法等判断,如果是交错级数,用莱布尼兹审敛法判断。本题用莱布尼兹审敛法,交错级数的通项递减且趋于0,所以收敛。
第二个是函数项级数
(1)它的通项是个函数,说白了就是通项里含有变量x,即an=[(-x)^(n-1)]/n。
(2)它的敛散性是不确定的,因为x取不同的值的时候,他就是不同的数项级数,(比如x=1就和第一个例子的级数一样,x=2就又变成另一个级数了)。这些不同的数项级数有的发散有的收敛。取决于x取什么值。
(3)对于函数项级数,考试的题目一般是,“求这个函数项级数的收敛域和收敛区间”,说白了就是问你:“x取什么值的时候,这个级数收敛,x取什么值的时候,这个级数发散?”
(4)解题步骤一般是:
先算出收敛半径,(比如我举得例子,算出收敛半径是1),那就是说,这个函数项级数在±1之内都是收敛的,比如x=0.9代入,肯定收敛的;而在±1之外是发散的,比如x=1.1代入,肯定是发散的。但是端点-1和+1的情况还不知道,需要另外判断。方法就是直接代入-1和+1,变成两个数项级数来判断。最终得到,-1时发散,而+1时收敛。所以最终考卷上写:x属于(-1,1]时,收敛。
展开全部
令f(x)=∑x^n/n(n+1)
则f'(x)=∑x^(n-1)/(n+1)=1/x²∑x^(n+1)/(n+1)
再记g(x)=∑x^(n+1)/(n+1)
则g'(x)=∑x^n=x/(1-x)=-1+1/(1-x), 收敛域为|x|<1
积分得:g(x)=C-x-ln(1-x)
因为g(0)=0, 故有C=0, 得g(x)=-x-ln(1-x)
故有f'(x)=1/x²g(x)=-1/x-1/x²ln(1-x)
积分得:f(x)=C-ln|x|-∫1/x²ln(1-x)dx
=C-ln|x|-[-1/xln(1-x)-∫1/x(1-x)dx]
=C-ln|x|+1/xln(1-x)+ln|x|-ln(1-x)
=C+(1/x)ln(1-x)-ln(1-x)
由于f(0+)=0, 得C-1=0, 即C=1
从而f(x)=1+(1/x)ln(1-x)-ln(1-x)
则f'(x)=∑x^(n-1)/(n+1)=1/x²∑x^(n+1)/(n+1)
再记g(x)=∑x^(n+1)/(n+1)
则g'(x)=∑x^n=x/(1-x)=-1+1/(1-x), 收敛域为|x|<1
积分得:g(x)=C-x-ln(1-x)
因为g(0)=0, 故有C=0, 得g(x)=-x-ln(1-x)
故有f'(x)=1/x²g(x)=-1/x-1/x²ln(1-x)
积分得:f(x)=C-ln|x|-∫1/x²ln(1-x)dx
=C-ln|x|-[-1/xln(1-x)-∫1/x(1-x)dx]
=C-ln|x|+1/xln(1-x)+ln|x|-ln(1-x)
=C+(1/x)ln(1-x)-ln(1-x)
由于f(0+)=0, 得C-1=0, 即C=1
从而f(x)=1+(1/x)ln(1-x)-ln(1-x)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询