展开全部
解:∵lnx~N(μ,σ²),∴f(x)=(1/x)Ae^[-(lnx-μ)²/(2σ²),其中A=1/[σ√(2π)]。
∴E(x)=∫(-∞,∞)xf(x)dx=A∫(-∞,∞)e^[-(lnx-μ)²/(2σ²)]dx。
设t=lnx,∴E(x)=A∫(-∞,∞)e^[t-(t-μ)²/(2σ²)]dt。而,t-(t-μ)²/(2σ²)=-(t-μ-σ²)²/(2σ²)+(μ+σ²/2),
∴E(x)=[e^(μ+σ²/2)]∫(-∞,∞)Ae^[-(t-μ-σ²)²/(2σ²)]dt。视“Ae^[-(t-μ-σ²)²/(2σ²)]”为均值为μ+σ²、方差为σ²的正态分布的密度函数,∴∫(-∞,∞)Ae^[-(t-μ-σ²)²/(2σ²)]dt=1。
∴E(x)=e^(μ+σ²/2)。
供参考。
∴E(x)=∫(-∞,∞)xf(x)dx=A∫(-∞,∞)e^[-(lnx-μ)²/(2σ²)]dx。
设t=lnx,∴E(x)=A∫(-∞,∞)e^[t-(t-μ)²/(2σ²)]dt。而,t-(t-μ)²/(2σ²)=-(t-μ-σ²)²/(2σ²)+(μ+σ²/2),
∴E(x)=[e^(μ+σ²/2)]∫(-∞,∞)Ae^[-(t-μ-σ²)²/(2σ²)]dt。视“Ae^[-(t-μ-σ²)²/(2σ²)]”为均值为μ+σ²、方差为σ²的正态分布的密度函数,∴∫(-∞,∞)Ae^[-(t-μ-σ²)²/(2σ²)]dt=1。
∴E(x)=e^(μ+σ²/2)。
供参考。
迈杰
2024-11-30 广告
2024-11-30 广告
基因表达相关性分析是迈杰转化医学研究(苏州)有限公司的核心业务之一。我们运用先进的生物信息学工具和方法,对大量基因表达数据进行深入挖掘,旨在揭示不同基因间的相互作用及其与生物表型之间的关联性。通过相关性分析,我们能够识别出与特定疾病、药物反...
点击进入详情页
本回答由迈杰提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询