n级台阶,一次了以上123级中一种,枚举所有上楼梯可能性,python实现
1个回答
展开全部
可以用枚举法和归纳法来解答。
一、枚举法
11级台阶,如果每次跨2级,最多可跨5次。所以,可以分六种情况来考虑:
1、每次都只跨一级台阶,这样的走法只有1种。
2、有一次跨二级台阶,其余每次都跨一级台阶,这样的走法有10=种。
3、有两次跨二级台阶,其余每次都跨一级台阶,这样的走法有8+7+6+5+4+3+2+1=36种。
4、有三次跨二级台阶,其余每次都跨一级台阶,这样的走法有(6+5++4+3+2+1)+(5+4++3+2+1)+(4+3+2+1)+(3+2+1)+(2+1)+1=56种。
5、有四次跨二级台阶,其余每次都跨一级台阶,这样的走法有36种。(算式略)
6、有五次跨二级台阶,其余每次都跨一级台阶,这样的走法有6种。
所以,一共有1+10+36+56+35+6=144=
一、枚举法
11级台阶,如果每次跨2级,最多可跨5次。所以,可以分六种情况来考虑:
1、每次都只跨一级台阶,这样的走法只有1种。
2、有一次跨二级台阶,其余每次都跨一级台阶,这样的走法有10=种。
3、有两次跨二级台阶,其余每次都跨一级台阶,这样的走法有8+7+6+5+4+3+2+1=36种。
4、有三次跨二级台阶,其余每次都跨一级台阶,这样的走法有(6+5++4+3+2+1)+(5+4++3+2+1)+(4+3+2+1)+(3+2+1)+(2+1)+1=56种。
5、有四次跨二级台阶,其余每次都跨一级台阶,这样的走法有36种。(算式略)
6、有五次跨二级台阶,其余每次都跨一级台阶,这样的走法有6种。
所以,一共有1+10+36+56+35+6=144=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询