如图,在三角形ABC中,角ABC=60度,AD,CE分别平分角BAC,角ACB,求证:AC=AE+CD

 我来答
乐正安安施爽
2020-02-14 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:700万
展开全部
证明:【此题主要是证明两角平分线夹角60º】
设AD,CE相交于O,在AC上截取AF=AE,连接OF
∵∠ABC=60º
∴∠BAC+∠ACB=120º
∵AD平分∠BAC
∴∠EAO=∠FAO=½∠BAC
又∵AE=AF,AO=AO
∴⊿AEO≌⊿AFO(SAS)
∴∠AOE=∠AOF
∵CE平分∠ACB
∴∠FCO=∠DCO=½∠ACB
∴∠COD=∠FAO+∠FCO=½∠BAC+½∠ACB=60º
∴∠AOE=∠AOF=60º
∴∠COF=180º-∠COD-∠AOF=60º
∴∠COD=∠COF
又∵CO=CO
∴⊿COD≌⊿COF(ASA)
∴CD=CF
∴AC=AF+CF=AE+CD
请点击采纳为答案
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式