设函数z=z(x,y)由方程z+e^z=xy确定,求dz及z''xx
展开全部
zx+e^z*zx=y
zx=y/(1+e^z)
zy+e^z*zy=x
zy=x/(1+e^z)
dz=zxdx+zydy
=y/(1+e^z)dx+x/(1+e^z)dy
zxx=[y/(1+e^z)]'x
=-y*e^z*zx/(1+e^z)平方
=-y*e^z*【y/(1+e^z)】/(1+e^z)平方
=-y平方e^z/(1+e^z)立方
zx=y/(1+e^z)
zy+e^z*zy=x
zy=x/(1+e^z)
dz=zxdx+zydy
=y/(1+e^z)dx+x/(1+e^z)dy
zxx=[y/(1+e^z)]'x
=-y*e^z*zx/(1+e^z)平方
=-y*e^z*【y/(1+e^z)】/(1+e^z)平方
=-y平方e^z/(1+e^z)立方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询