用分析法证明下列问题:已知a>0,b>0,求证:a^ab^b>=a^bb^a

lucyjxm
2011-04-04 · TA获得超过727个赞
知道小有建树答主
回答量:286
采纳率:0%
帮助的人:365万
展开全部
证明:由a>0,b>0,ln x是增函数,要证:a^a b^b>= a^b b^a,
即证:aln a + bln b>= aln b + bln a
即证:a(ln a - ln b)+b(ln b-ln a)>=0
即证:(a-b)(ln a -ln b)>=0.
由于,ln x是增函数,因此,a-b与lna -lnb符号相同。
则(a-b)(ln a - ln b)>=0成立。
于是:原不等式成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式