1=0.99999的悖论错在哪里

 我来答
四面通老师

2020-11-26 · TA获得超过8079个赞
知道大有可为答主
回答量:2.3万
采纳率:94%
帮助的人:614万
展开全部
1=0.99999数学界的争议,诡异的数学题你能否解开
我们常说1就是1,2就是2,但是在数学界里,1=0.99999能够被证明出来,两个数字明明是有差别的,但却很奇怪的能够相等,这又是为什么呢?在数学界还有着许多类似的争议,下面探秘志小编就先为大家介绍一下1=0.99999数学界的争议!

1=0.99999数学界的争议
文章导航:

1、运算过程

2、大学老师解释

3、数学与现实

4、类似的数学界的争议

5、诡异的数学题

运算过程

a=0.99999…

10a=9.99999…

10a=9+0.99999…

10a=9+a

9a=9

a=1

这是证明1=0.99999的例子,根据这个思路看起来是没有什么问题的,但似乎总有一些不对劲的地方。

1=0.99999数学界的争议,诡异的数学题你能否解开

韩国大学的数学老师解释

认为0.99999等于1的人是因为1/3=0.33333 1/3X3=1,0.333X3=0.99999=1。普通人的思维是,循环小数后面是无限循环的,很难理解。现在我告诉大家,其实循环数有另外很多种方式,例如多位循环等,我现在用通俗的方式来告诉大家。

1=0.99999数学界的争议,诡异的数学题你能否解开

0.999999999999,9的循环,是单位数循环。现在我们加入一个多位循环的循环数进去,例1/7=0.142857142857142857的循环。我们计算1/X和0.99999/X,看看1/X是不是等于0.9999999/X,如果0.99999=1,计算结果肯定是相等的。在计算过程中你们会发现一种很神奇的现象,(先算算,在举一反三用其他循环数来思考)是不是可以算出来无限类型的循环,非常神奇,这就是数学。我们还可以把X设置为另外的非循环数。

数学与现实

数学和现实可以没有任何关系,它的关键是定义。不同的定义,可以让他相等,也可以让他不相等。

如果你停留在有理数(即分数)的定义,认定0.9999......是有理数,那么0.9999......转化为分数就是1/1,无疑是1。

如果你停留在实数的定义,认定0.9999......是实数,那么0.9999......和1之间不存在其他实数,而且无论是转化为序列表示还是戴德金分割,都是等价的,因此也相等。

1=0.99999数学界的争议,诡异的数学题你能否解开

如果你超越实数,定义出含“无限接近1的数”的新数系,那么他就不等于1.

而实际上,认为等于1的人,心中都创造了1个不完备的、超越实数的、含“无限接近某实数的数”的新数系。

当然,数学与现实又是分不开的,生活中的很多内容都要运用到数学的原理。

类似的数学界的争议

1、芝诺悖论

这也算是物理学界的一个争议,阿基里斯与乌龟芝诺赛跑,乌龟在阿里斯基前面先跑100米,然后阿基里斯才开始跑。

当阿基里斯跑了100米的时候,乌龟多跑出去一米,阿基里斯跑了一米的时候,乌龟又多跑了一厘米,以此推论下来,阿基里斯永远都跑不过乌龟。虽然现实中是很快就跑过去的,但是在数学里,似乎永远都是追不上的。

1=0.99999数学界的争议,诡异的数学题你能否解开

2、蚂蚁与皮筋

一只蚂蚁在理性弹性绳的一端,向另一端以每秒1cm的速度爬行。弹性绳同时以每秒1m的速度均匀地拉长,蚂蚁能否爬到终点?

看起来似乎不行,但是在数学里这又是行的,假设弹性绳的速度是每秒0.9cm,那么直觉上蚂蚁就能爬到终点。而弹性绳均匀拉长意味着其上总有一点的速度是每秒0.9cm,也就是说蚂蚁可以爬到这个点。接下来把整个弹性绳分段就好了。还有一些数学题也显得非常的诡异。

诡异的数学题

一天晚上,有三个人去住宾馆,300元一晚。三个人刚好每人掏了100元凑够300元交给了老板。他们回到了房间,老板忘今天打折又还了50元给他们,让服务员送还给他们。服务员想50元钱他们也不好分,自己就拿了20元,这三人每人得到10元钱后,应该是每人只花了90元钱住了一晚,3*90=270,服务元拿20元,270+20=290元,请问那10元钱那里去了??300-290=10(元) 想问的是:明明三个人是出了300元怎么就变成290元了呢?
企程科技
2024-11-25 广告
企程科技咨询热线400-822-7130,企程科技是一家以D365 ERP CRM系列产品为平台,致力于提供通用企业解决方案的专业服务公司。我们拥有专业的技术团队和丰富的行业经验,能够帮助企业实现数字化转型,提升运营效率和竞争力。我们助企业... 点击进入详情页
本回答由企程科技提供
图解魔羯

2020-11-26 · TA获得超过8979个赞
知道大有可为答主
回答量:1.3万
采纳率:65%
帮助的人:428万
展开全部
这不是悖论,而是事实,无限循环小数0.999...和 1 严格相等,不是无限趋近,而是完全相同,你可以认为 他们是同一个数的两种写法而已。
这两者相等,是实数的构造过程直接决定的,而严格的证明过程也绕不开构造实数的两种方法,戴德金分割和柯西序列法,并且他们是等价的
网上常见的证明方法,比如什么 1=1/3*3=0.333..*3=0.999.. ,均不是严格证明,而针对这种证明方法的反驳也都只需一笑而过就好
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
乌蒙别恋
2020-11-24 · TA获得超过1.8万个赞
知道大有可为答主
回答量:1万
采纳率:80%
帮助的人:242万
展开全部
你好!只能说1≈0.99999
因为前者永远不可能等于后者
虽然差距很小,但是失之毫厘差之千里!
祝你学习愉快!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
老少爷们老虎
2024-02-12
知道答主
回答量:1
采纳率:0%
帮助的人:138
展开全部
在我们人为的0.9999…不等于1是因为大脑习惯性的认为他就是无数个9,但是,对于0.999…或者说无限小数来说,它本身是个过程数,而非我们通俗意思中的数字,不论你的意识到达哪一位,其实他都是有截止到响应尾数的一个余数1,所以0.9999…是个过程数,而非实际数,因为有那个相应位数的余数1,+你意识到的0.999…9是不是就等于1了!!!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
真舒O2
2020-11-24 · TA获得超过999个赞
知道答主
回答量:9028
采纳率:13%
帮助的人:486万
展开全部
一亿一万两千八万八千六百八十八九万元,为什么花那么多钱?一为你省钱
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式