实数X,Y,Z满足X^2+Y^2+Z^2=1 则√2 xy+yz的最大值为

柯西先生
2011-04-04 · TA获得超过145个赞
知道答主
回答量:24
采纳率:0%
帮助的人:0
展开全部
√2 xy<=(1/2)(√3)x^2 + 1/(√3)*y^2,
yz<=(1/2)[1/(√3)*y^2 + √3*z^2],
相加得:√2 xy+yz<=(1/2)(√3)x^2 + 1/(√3)*y^2 + (1/2)[1/(√3)*y^2 + √3*z^2]
=(1/2)√3*(x^2 + y^2 + z^2)=(1/2)√3.
所以最大值是根号3的一半,(等号能成立)
有不清楚的地方可以追问。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式