在数列{an}中,前n项和为Sn已知a1=2∕3,a2=2,且S(n+1)-3Sn+2S(n-1)=0(n∈N*,n≥2)(1)求{an}的通项公

(2)求Sn已知二次函数y=f(x)=3x²-2x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N+)均在函数y=f(x)的图像上(1)求数列{an}的通... (2)求Sn
已知二次函数y=f(x)=3x²-2x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N+)均在函数y=f(x)的图像上(1)求数列{an}的通项公式
(2)bn=3/an·a(n+1),Tn是数列{bn}d的前n项和,求使得
Tn<m/20对所有n∈N*都成立的最小正整数m
展开
百度网友b79519e
2011-04-04 · TA获得超过3399个赞
知道大有可为答主
回答量:1417
采纳率:100%
帮助的人:1331万
展开全部
1.S(n+1)-3Sn+2S(n-1)=0
即S(n+1)-Sn=2(Sn-S(n-1)),就是a(n+1)=2an(n>=2)
a2=2,那么an=2^(n-1)(n>=2)
an=2/3(n=1)
2.Sn=a1=2/3(n=1)
Sn=a1+a2+...+an=2^(n+1)-2+2/3=2^n-4/3(n≥2)

Sn=f(n)=3n^2-2n
n>=2时
S(n-1)=3(n-1)^2-2(n-1)
an=Sn-S(n-1)=6n-5
S1=a1=3-2=1=6-5,即n=1时也成立
所以an=6n-5
bn=3/an·a(n+1)=1/2(1/(6n-5)-1/(6n+1));如果不是很清楚,自己验证一下
b1=3/a1*a2=3/7
Tn=1/2*(1-1/(6n+1))=1/2-1/(6n+1)<1/2
Tn<m/20对所有n∈N*都成立那么m/20>=1/2
所以m>=10
m的最小值为10
skylov3
2011-04-04 · 超过19用户采纳过TA的回答
知道答主
回答量:81
采纳率:0%
帮助的人:57.8万
展开全部
请问1楼的高手 a2=2,那么an=2^(n-1)(n>=2)
是怎么推出来的啊 谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式