![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
2个回答
展开全部
设函数y=y(x)是由方程 e^x-e^y=sin(xy)所确定,求y'(0);
解:将x=0代入方程得:1-e^y=0,故e^y=1,∴y=0,即x=0时y=0;
设F(x,y)=e^x-e^y-sin(xy)=0;
则 dy/dx=-(∂F/∂x)/(∂F/∂y)=-[e^x-ycos(xy)]/[-e^y-xcos(xy)]∣(x=0,y=0)
=-[1/(-1)]=1
解:将x=0代入方程得:1-e^y=0,故e^y=1,∴y=0,即x=0时y=0;
设F(x,y)=e^x-e^y-sin(xy)=0;
则 dy/dx=-(∂F/∂x)/(∂F/∂y)=-[e^x-ycos(xy)]/[-e^y-xcos(xy)]∣(x=0,y=0)
=-[1/(-1)]=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询