设集合A={x|0≤x-m≤3},B={x|x<0或x>3},A∩B=A,求实数...
设集合A={x|0≤x-m≤3},B={x|x<0或x>3},A∩B=A,求实数m的取值范围....
设集合A={x|0≤x-m≤3},B={x|x<0或x>3},A∩B=A,求实数m的取值范围.
展开
展开全部
分析:先求出不等式0≤x-m≤3的解集就是A,根据A∩B=A⇔A⊆B和端点值的关系列出不等式组进行求解,求出m的范围.
解答:解:A={x|0≤x-m≤3}={x|m≤x≤m+3},
∵A∩B=A,
∴A⊆B,
∴m>3或m+3<0,
∴m>3或m<-3.
实数m的取值范围m>3或m<-3.
点评:本题考查了交集、并集的运算和子集的转换,根据A∪B=A得B⊆A,再由集合中的不等式得到端点值的关系,进而列出不等式进行求解.
解答:解:A={x|0≤x-m≤3}={x|m≤x≤m+3},
∵A∩B=A,
∴A⊆B,
∴m>3或m+3<0,
∴m>3或m<-3.
实数m的取值范围m>3或m<-3.
点评:本题考查了交集、并集的运算和子集的转换,根据A∪B=A得B⊆A,再由集合中的不等式得到端点值的关系,进而列出不等式进行求解.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询