三角函数题目
已知函数f(x)=根号3sin(2x-pia/6)+2sin^2(x-pia/12),x∈R,(1)求函数f(x)的最小正周期(2)求使函数取得最大值的x的集合...
已知函数f(x)=根号3sin(2x-pia/6)+2sin^2(x-pia/12),x∈R,
(1)求函数f(x)的最小正周期
(2)求使函数取得最大值的x的集合 展开
(1)求函数f(x)的最小正周期
(2)求使函数取得最大值的x的集合 展开
展开全部
f(x)=√3sin(2x-π/6)+2sin^2(x-π/12)
=√3sin(2x-π/6)+1-cos(2x-π/6)
=2(√3/2sin(2x-π/6)-1/2cos(2x-π/6))+1
=2(sin(2x-π/6)cosπ/6-cos(2x-π/6)sinπ/6)+1
=2sin(2x-π/6-π/6)+1
=2sin(2x-π/3)+1
所以最小正周期T=2π/2=π
当sin(2x-π/3)=1时取得最大值
2x-π/3=2kπ+π/2
2x=2kπ+5π/6
x=kπ+5π/12
=√3sin(2x-π/6)+1-cos(2x-π/6)
=2(√3/2sin(2x-π/6)-1/2cos(2x-π/6))+1
=2(sin(2x-π/6)cosπ/6-cos(2x-π/6)sinπ/6)+1
=2sin(2x-π/6-π/6)+1
=2sin(2x-π/3)+1
所以最小正周期T=2π/2=π
当sin(2x-π/3)=1时取得最大值
2x-π/3=2kπ+π/2
2x=2kπ+5π/6
x=kπ+5π/12
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询