已知a、b、c分别为△ABC的三个内角A、B、C的对边,且△ABC的面积S,(1)当2cosA/2+cos(B+C)取得最大值时,求A

已知a、b、c分别为△ABC的三个内角A、B、C的对边,且△ABC的面积S,(1)当2cosA/2+cos(B+C)取得最大值时,求A的值(2)对于(1)中的A,若b=2... 已知a、b、c分别为△ABC的三个内角A、B、C的对边,且△ABC的面积S,
(1)当2cosA/2+cos(B+C)取得最大值时,求A的值
(2)对于(1)中的A,若b=2且S=2根号3,求a的值
(3)对于(1)中的A,若a=2,求S的最大值
展开
lqbin198
2011-04-05 · TA获得超过5.6万个赞
知道大有可为答主
回答量:9447
采纳率:0%
帮助的人:4863万
展开全部
(1) 2cosA/2+cos(B+C)=2cos(A/2)-cosA
=-2[cos(A/2)-1/2]^2+3/2
当cos(A/2)=1/2时,取得最大值
A/2=60° A=120° C=60°-B
(2) S=(1/2)bcsinA=(1/2)*2*c*(√3/2)=2√3
c=4
a^2=b^2+c^2-2bccosA=4+16-2*2*4*(-1/2)
=20+8=28
a=2√7
(3) 由正弦定理a/sinA=b/sinB=c/sinC=2/(√3/2)=4/√3
b=4sinB/√3 c=4sinC/√3
S=(1/2)*bcsinA=(√3/4)*bc=(4√3/3)sinBsin(60°-B)
=(2√3/3)[cos(60°-2B)-cos60°]
=(2√3/3)[cos(60°-2B)-1/2]
可见cos(60°-2B)=1时
Smax=√3/3
此时B=C=30°
rally511
2011-04-05 · TA获得超过2948个赞
知道小有建树答主
回答量:3154
采纳率:22%
帮助的人:1700万
展开全部
{(x,y)l(x-2cosa)^2+(y-2sina)^2=16(a∈R)}则是圆心在Cα上半 径为4的圆的集合。不难看出,它们正是原点为圆心6为半径的圆面。 点P所
追问
详细过程。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式