(x+1)^n展开式是什么?
1个回答
展开全部
令f(x)=ln(1+x),则:
f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k; (k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方。
f(x)=f(x0)+∑fk(x0)(x-x0)^k/k!(k=1,2,3……)
x0可取f(x)定义域内的任意数,根据需要选择.如x0=0,则上式为f(x)在x=0处的泰勒展开式。
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询